SECTION 7. MLS AND DME/P FREQUENCY ENGINEERING

- 63. FREQUENCY ENGINEERING FOR MLS AND DME/P.
 - a. MLS and associated DME/P frequencies are listed in section 1, figure 1.
- b. Use of a paired channel as listed in figure 1 requires that DME/P's be collocated with the MLS antennas, which means within 100' of the antenna.
 - c. FPSV's for MLS and DME/P are as shown in figures 187-190.

FIGURE 187. FPSV FOR MLS APPROACH AZIMUTH/DATA COVERAGE

FIGURE 189. FPSV FOR MLS BACK AZIMUTH/DATA COVERAGE

050198 6050.32A Appendix 3

d. The MLS approach azimuth and elevation horizontal service volumes are conical segments, 80° wide with a complex vertical service volume. Figure 191 shows the D/U values.

FIGURE 191. INTERIM MLS COCHANNEL AND ADJ. CHANNEL SEPARATION D/U VALUES

COCHANNEL	+26.5 dB D/U
1ST ADJ. CHANNEL	-19 dB D/U
2ND ADJ. CHANNEL	-23.5 dB D/U

e. Harmful interference to DME/P's associated with MLS is prevented by geographically separating cochannel and adjacent-channel assignments. Within each FPSV, the DME/P D/U ratio shall be at least the values shown in figure 192, on a basis of 95 percent availability.

FIGURE 192. DME/P COCHANNEL AND ADJACENT CHANNEL SEPARATION D/U VALUES

COCHANNEL	1ST ADJ. CHNL (± 1 MHz)	2ND ADJ. CHNL 3R (± 2 MHz)		
@22 nmi	@ 22 nmi	@ 7 nmi	@ 7 nmi	
+9.5 dB	-23.5 dB FOR DME/P -29.5 dB FOR T-ILS-D -39.5 dB FOR L-DME -40.5 dB FOR ALL TA	-20.5 dB	NONE NONE -32.5 dB -32.5 dB	
NOTES:	All D/U ratios include the +1.5 dB factor for transmitter power variation. Cochannel and 1st adj. channel D/U values are for the protection of a 22 nmi radius. 2nd and 3rd adjacent channel D/U values are for the protection of a 7 nmi radius.			

- **64. FREQUENCY ENGINEERING PROCEDURES**. To ensure that the proposed MLS-DME/P frequencies would provide interference-free operations within their FPSV's, the following analyses must be performed on the proposed frequencies.
- **a. Intersite analysis** is used to determine whether the proposed frequencies meet the assignment criteria as specified in paragraph 63 d. There are two analysis methods, table and calculation.

6050.32A 050198

Appendix 3

- b. Cosite analysis is used to avoid interference caused by interaction between the proposed MLS and DME/P frequencies and other frequencies in the vicinity of the proposed site. Cosite analysis is discussed in the appendix.
- **65.** MLS INTERSITE ANALYSIS BY TABLE METHOD. Intersite analysis may be performed on a proposed MLS frequency through the use of the tables shown in figure 192 which shows conservative-worst-case separation distances:
- a. Figure 193 is for MLS/MLS cochannel and adjacent channel. Adjacent channel criteria requires a minimum of 1.2 MHz separation for MLS sites at the same airport.
 - **b.** Tables for adjacent channels will be provided at a later date.

FIGURE 193. INTERIM MLS COCHANNEL SEPARATION DISTANCE

MLS DESIRED, MLS UNDESIRED	. +26.5 dB PROTECTION
FACILITY CLASS	SEPARATION (NMI)
MLS	205
1st Adjacent Channel	32
2nd Adjacent Channel	32

DME/P INTERSITE ANALYSIS BY TABLE METHOD. Intersite analysis may be performed on a proposed DME/P frequency through the use of the table shown in figure 194 which shows the conservative-worst-case separation distance.

FIGURE 194. MLS DME/P ASSIGNMENT CRITERIA

DME/P	VS.		DME/PT-DMEL-DMEH-DME			
		(nmi)	(nmi)	(nmi)	(nmi)	
COCHANNEL	SAME CODE	205*	205	205	400	
	DIFFERENT CODE	50	50	170	170	
1ST ADJ. CHNL	SAME CODE	25	30	45	145	
	DIFFERENT CODE	25	30	45	145	
2ND ADJ. CHNL	SAME CODE	8	9	12	14	
	DIFFERENT CODE	8	9	12	14	
3RD ADJ. CHNL	SAME CODE	-	-	9	9	
	DIFFERENT CODE	-	-	9	9	
*DL OC +	tect MLS angle receiver at 20	000/				

Pulse loading criteria: Maximum 3 DME, DME/P or TACAN sites

within 50 nmi radius and within ± 3 MHz.

Ground receiver protection: ± 63 MHz minimum 15 nmi separation.